AD=A039 840 FLORIDA UNIV GAINESVILLE DEPT OF INDUSTRIAL AND SYS==ETC F/6 12/2 N

UNNETWORKSs WITH APPLICATIONS TO IDLE TIME SCHEDULING. (U) e
APR 77 J J BARTHOLDI+ H D RATLIFF N0OO1u4=76=C=0096
UNCLASSIFIED RR=T77=4

NL







e e i Giath

UNNETWORKS ,
WITH APPLICATIONS TO IDLE TIME SCHEDULING

Research Report No. 77-4
by

John J. Bartholdi III
H. Donald Ratliff

April, 1977 SR | |

Department of Industrial and Systems Engineering
University of Florida
Gainesville, Florida 32611

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the Office of Naval
Research under contract number N0001l4-76-C-0096 and the Army
Research Office under contract number DAHCO4-75-G~0150.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER
AUTHORIZED DOCUMENTS.

i




UNCLASSIFIED K\-v"“

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Gt e Wi T Vi

£ °

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS

[T REPORT NUMBER
17-4

BEFORE COMPLETING FORM
2. SOVT ACCESSION NOJ 3. RECIPIBNT'S CATALOG NUMBER 1

4., TYTLE (and Subtitle)

;ﬁnnetworks, with Applications to
Idle Time Scheduling

D RE-77- 4
covined

S. TYPE OF REPORT & PEMOD

lechnical

6. PERFORMING ORG. REPORT NUMBER

2-—~AMITHOR(e)
D

/John J./éartholdi III
/H. Donald Ratliff

< DaHC04-75-G-0150 )

.. co;rucv OR GRANT NUMBER(s)
- /
N00014-76-C-0096 . |

9. Pﬁﬁﬁmﬂa ORGA.NIZATION NAME AND ADDRESS

University of Florida
32611

Industrial & Systems Engineering L // 1

10. PRCGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

20061102A14D Rseh 4in &
Appl of Applied-Math.

11. CONTROLLING OFFICE NAME AND ADDRESS
U. S. Army Research Office Office of Naval

P. 0. Box 12211 Research
Triangle Park, NC 27709 Arlington, VA

12. REPORT DATE

~

T4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office)

~48. \SE 1Y CLASS. (of thie report)
/

Unclassified
Sa. ozc:.Assa!ncnlonloowucnnma

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

SCHEDUL

N/A

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

integer programming idle time scheduling
complementary problem

network flows

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

there.

20. A&TRACT (Continue on reverse side If necessary and identify by block number)

" The Dormouse celebrated its unbirthday 364 days of the year. Accord-
ingly, this class of integer linear programs might be called unnetworks.
They are interesting and efficiently solvable because of what is not

Applications to idle time scheduling are discussed.

‘]\,

DD , 5%, 1473  Eo0iTioN OF 1 NOV 65 15 OBSOLETE

Unclassified

SECURITY CL

ASSIFICATION OF THiS PAGE (When Data Entered)

T T R e e




ABSTRACT . . . . .« .

SECTIONS

Introduction

Motivation

Table of Contents

A Primal Problem and Its Complement .

An Algorithm Based on the Complementary

Efficiency of the Algorithm . . . .

A Round-Off Result

Examples . . .

* e s o o o

Another Staffing Problem . . . . . .

Extensions and Applications . . . .

BIBLIOGRAPHY .

FPRECEDING PAGE ELANK-NOT FILMED

o o o

Problem

Sl

. i

4
=4 A
. |
e s

|
et -
ok 18
: 9 ,
N
B a0
S
anis




Abstract

The Dormouse celebrated its unbirthday 364 days
of the year. Accordingly, this class of integer linear pro-
grams might be called unnetworks. They are interesting and
efficiently solvable because of what is not there.

Applications to idle time scheduling are discussed.




0. Introduction

In solving an integer linear program with a 0-1 constraint matrix, suf-
ficient conditions for tractability seem to emphasize the pattern of 1l's
within the matrix (e.g. Hoffwan and Kruskal [10], Iri [11]). But by the same
token, the pattern of 0's may predispose a problem to tractability. In general
this has been overlooked, perhaps because of the natural tendency to concen-
trate on '"what is there'" rather than on what is not. We make a simple change
of focus to define a complementary problem; by so doing, we identify a pre-

viously unrecognized class of efficiently solvable integer linear programs,

1. Motivation

Recently a manpower scheduling problem studied by Tibrewala, Philippe, and
Browne [13] has generated considerable discussion in the literature (Baker [2 ],
Brownell and Lowerre [4 ], Chen [5 ]). The problem is to minimize the number
of workers needed to meet daily requirements with the added proviso that
each worker must be allowed two consecutive days off each week. This may be

N

modelled as an integer linear program:

min 1x
st le 44 1 %4 b, ]
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x > 0, integer
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where each column represents a possible pattern of days off, x, represents the ?4

3
number of workers on work pattern j, and b1 is the number of workers required
on day i.

Now while Tibrewala, et al. have in fact developed a simple numerical al- 1
gorithm for solving this problem, the integer linear program formulation is, on
first glance somewhat distressful: the constraint matrix displays none of those
immediately commendable virtues for which one might hope, i.e., it is not unimodular,
balanced, or even perfect (Padberg [12]). Nevertheless, its special structure
is appealing. We observe that there are two zeros in each column. Recalling
that a network may be uniquely associated with a matrix having two ones in each
column, we may imagine that our matrix determines evecything but a network -

an unnetwork, if you will.

Consider now the complementary problem, which is a sort of negative image

of the original:

max i;
s.t. ; S RO T S ) R B~ By
) G R SRS ) S R AR 8 - b,
¢ 1 ¥ 0. 8.9 s - b,
) S SR S N SN B R s - b, (1. 2)
S T S ) e S B R s - bg
.0 0 w1 31 D 8 = b,
L__o_ 0 0 0 0 1 _11 j-blj

; > 0 , integer
Imagine s to be a workforce size (positive integer, of course); then s - bi
represents the maximum number of workers who may be idle on day i. We then
have formulated the following problem: given a workforce of size s, maximize
the number of workers who may be given two consecutive days off each week.

Clearly, if for given s, the solution satisfies 1y < s, the workforce is too




small to meet daily staffing requirements and still allow everyone time off.

On the other hand, if for fixed s we find i; > s, we may conclude that the
workforce is adequate. If in fact i; > s, we may interpret this to say that
too many workers have been assigned time off. A feasible time-off schedule
for a work force of size s may be easily found, however, by simply reducing
the entries in ; to ;r such that 1§r = s; that is, time-off is assigned to no
more than s workers. What we seek then is the smallest integer s = s* for
which the corresponding solution to (1.1) satisfies i;* > s*, i.e., the smal-
lest adequate work force. We are encouraged to search for this s* by the happy
fact that the derived problem is a familiar one, viz. a maximum matching pro-
blem on a graph (Edmonds [6 ]).

Let us take a more general and formal view of the idea suggested here.

2. A Primal Problem and Its Complement

Let A be a 0-1 matrix of m rows and n columns, and let b be a compatibly
dimensioned vector with all entries integer. Consider the integer linear

program:

b (2:1)

w
.
[ad
&
|V

x 1_5, integer
where, without loss of generality, we may assume b > 0.
Let E be the m x n matrix whose every entry is 1, and let 1 and s be com-
patibly dimensioned vectors whose every entry is 1 and s, respectively. Then

the following integer linear program - which we call the complement of (2.1) -

is of interest.

max I;
s.t. [E-Aly < s-b (2.2)
; 3_5, integer
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Note that the matrix E-A = AC (read "A complement") has 1's wherever A has

0's and has 0's wherever A has 1's.

The following results then pertain:
Theorem 2.1: Let s* be the smallest integer s for which the corresponding solu-
tion y* to (1.2) satisfies 1ly* > s*., Reduce the entries in y* arbitrarily -
though maintaining integrality and non-negativity - to ;; such that i;: = g%,
Then x* = ;: solves problem (1.1) and the optimal objective function value is
Ixd = Ryt = gk,
Proof: By construction ;; > 0 and integer: and since 0 f-§*r :_;*, we have
that [E—A]§: < s*-b. This together with i;; = g% iff E§; = s*, implies that

A}: > b, so that }: is feasible to problem (2.1). Now if ;: is not optimal

to (2.1), there must exist some ; feasible to (2.1) such that i; < i;: = g%,

«

But then y is feasible to problem (2.2) for s = s' = 1y, so that the optimal

\J

' satisfies 1y' > 1y = s'. But this contradicts

solution ;' to (2.2) for s = s
the assumption that s* is the smallest inﬁeger value of s for which such a
solution exists.
Q.E.D.

Therefore, if we can locate the smallest s = s* for which the correspond-
ing solution y* to problem (2.2) satisfies 1y* > s*, the solution to the orig-
inal problem is at hand. 1In gddition, when i;* > s*, lemma 2.1 implies that
we have great freedom in moving to an optimal solution ;;. Hence, we have
a host of easily attainable alternative optima from which we may choose in
order to satisfy secondary criteria.

A famous recipe for hare stew begins, '"First you catch a hare..." In

this case we must locate s*. Fortunately an efficient trap is provided by the

several results to follow.

Let bmax denote the largest entry in b. Then
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Lemma 2.1: b < g% < min(ig, nb )
e max — = max
Proof: To establish the upper bound, notice that at optimality every variable in

problem (2.1) appears in some tight constraint, since otherwise that variable

could be reduced and feasibility maintained. Summing the set T of tight con-

straints yields ) ) a . x¥ = ¥ B ;3 but s ] b= 7 7 ay x* > ) x* =
1eT 3 S 3 ger 1eT 1 1eT j
1x = s*. Also, letting b Z x* be a tight constraint in which x* appears,
j J
we have that b Z x* > x¥ so that certainly b > x* and nb > Tx* = s*,
5 j max — " j max —

To show the lower bound, it is sufficient to observe that since x > 0,

Ex > Ax 3_5 so that 1x :-bj ¥ j. Thus s* = Ix* z-bmax
Q.E.Ds:

Incidentally, these bounds are in general the best possible, since if

A = E, then s* = bmax while if A = I, s* = 1b. Of course for specially

structured matrices A, tighter bounds may be derived. At any rate, we may

conclude that both the range and the magnitude of the integer s* are

bounded by a polynomial in the values of the problem data.

Lemma 2.2: For fixed integer s', let ;‘ be the corresponding solution to

problem (1.2). Then ly' < s' iff s' < s*, where s* is defined in Theorem 2.1.

Proof: If s' < s* then 1;' < s' since s* is the smallest integer less than

or equal to its corresponding optimal objective function value ly*.

e ‘ =i r
On the other hand, suppose ly' < s' but s* < s'. Then y = y* + s'-s;

(o]

satisfies y > 0, and [E-Aly = [E-AJy* 4 [E-A] [?'-si] < sk -b+E [s'-s*| =
S* = b+ 8" - s* = g' - b; thus ; is feasible to problem (2.2) with s = s'.

Moreover 1 i;* g Lk R e ol A b T I;', which contradicts ;'

[
«
]

solving (2.2) for s = s'.
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Corollary: For fixed integer s', let ;' be the corresponding solutidﬁ“tbﬁ(Z.Z)lr

Then 1y 2 8t IFf gkic gt
Thus the relationship between s and its associated optimal objective func-
tion value for problem (2.2) may be illustrated as in Figure 2.1.

3. An Algorithm Based on the Complementary Problem

We incorporate the preceding results in

A Complementary Algorithm

Step 0: Given the problem
min Ix

>b (2.1)

|

s.t. A
x 3_5, integer

form the complementary problem

(2.2)

s.t. [E-Aly <s - b

y > 0, integer

Step 1: Search for s*

A. Restrict s* to the interval bmax < s* :_min(is, nbmax) where s*

is an integer.

B. Perform binary search (Aho, Hopcroft, and Ullman [1 ]) through this
interval to locate s*. At each iteration s is fixed at a value s' and
the corresponding version of problem (2.2) is solved; then the optimal
objective function value ly' is compared to 8' and lemma 2.2 invoked

to further restrict the location of s* to s* < s' or s' < s*.

Having determined s* and the corresponding solution y* to problem

(2.2), proceed to step 2.

Step 2: Construct the optimal solution to the original problem, (2.1).




A~ A
(i ) (’——' \
! L [\ 1 1 1 1 = 1 l
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max

Figure 2.1: Behavior of s' and associated optimal

- ]

solution ¥' (see lemma 2.2 and corollary).
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A. By theorem 2.1, we may reduce entries in y* arbitrarily - though maintaining
integrality and non-negativity - to construct ;: such that i;: = gk,
Then x* = ;; is the solution to the original problem, (2.1).

4. Efficiency of the Algorithm

An algorithm may be considered formally efficient if its worst case perfor-
mance may be bounded above by a polynomial in the size of an encoding of the
problem data (Aho, Hopcroft, and Ullman [1]). Accordingly, we may consider
an algorithm binary efficient if it is efficient with respect to a binary en-
coding; similarly, unary efficient if efficient with respect to a unary encoding.
The minimum cost network flow algorithm for instance is binary efficient
(Edmonds and Karp [8]) and the maximum b-matching is unary efficient (Edmonds

and Johnson [7]).

Lemma 4.1: If, for any fixed s, the complementary problem, (2.2), is effi-

ciently solvable with respect to a binary encoding of the problem data, then v

the complementary algorithm solves the primal problem, (2.1), with formal

I

efficiency relative to a binary encoding.
Proof: Since assumed efficiently solvable with respect to a binary encoding,
suppose the complementary problem (2.2) is solvable in no more than
o(p(n, log2 EE, log2 s)) steps for some polynomid? p, which we may assume to
be non-decreasing in its variables, n, 1og2 iS, log2 s. Since by lemma 2.1, {
s* < ig, it must be that log2 s* < log2 1b. Thus each complementary pro- }
blem solved by the algorithm requires no more than 0(p(n, log2 1b, 1og2 1b))
steps=-or simply 0(p(n, 1og2 1b)) for some polynomial f. |
Now, to perform binary search for s* in the interval bmax < s¥ 5_i5, 7
we need solve no more than O(log2 15) complementary problems; thus, no more
than O(log2 1b - p(n, 1og2 1b)) steps are required to find s* and the accom-

panying solution to the appropriate complementary problem.

o




Finally, constructing y? as described in theorem 2.1 is a simple 0(n) pro-

cess.

by the complementary algorithm to solve the primal problem.

polynomial in terms of a binary encoding

Corollary:

solvable with respect to a unary encoding of

mentary algorithm solves the primal

tive to a unary encoding.

Therefore, no more than 0(log, 1b

If, for any fixed s, the

To efficiently solve the primal

efficient solution technique for th:

5. A Round-Off Result

A rather surprising round-off

[15], holds for special versions of

Consider the continuous—valued rela:

min 1x
s.t. Ax > b
x>0

and

max 1y

s.t. [E-Aly <s - b

y >0

respectively. Then letting z* be the

valued problem, (5.1) and s* that
Theorem 5.1: 1If for any integral

is integral, then [z*] = s* 6 where

Proof: Let x* solve (5.1) with lx*
of lemma 2.1, y' = x* + | [z 2
o]

>

resul

proble

complementary problem (2.2)

problem,

then,

it is enough that there exist some ’J
l ement
t, similar to that obtained by Weinberger

p(n, lo 1b) + n) steps are required

o
.32

Clearly this is

of the

data of the primal problem.

QL E. Dl 3
is efficiently
the problem data, then the comple-

(2.1), with formal efficiency rela-

m \ L)

E
itions of problems (2.1) and (2.2):
1
(Hail)

»
A
|8
(5.2) i§
.‘

mal function value of the continuous-
)
integer-restricted version, (2.1), k
:
L}
) ) i
em (5.2) has an optimal point that ;
r
1d up to the closest integer. !

sn by an argument similar to that
ble t« 2) for s [z*] and




|
ly' = [z*]. Thus the optimal solution to (5.2) for s = [2z*] must satisfy .q
== : . L
ly > [z*]. Moreover, by the assumed property of (5.2), we may take this solu- {
| tion to be integer and therefore feasible to (2.2). But then by the corollary
i .
L . s e , = 1
! to lemma 2.2, we have that s* < [z*]. But since (5.1) is a relaxation of (2.1),
z* < s*, Therefore we conclude that s* = Z %)L |
id
I
Q.E.D. |
i
For matrices such that E-A is tocall mimodular, (5.2) has integral !
i
extreme points and the round-off result appiies. A particular class of such |
matrices are those for which the complementary problems are >lvable by the 4
minimum cost network flow algorithm. Iri [ll] has given a characterization of
such matrices along with a proof of their tot mimodularity Example 6b
| in the following section illustrates this property.
i 6. Examples ¥
{
il (a) To return to the two consecutive days off scheduling problem, (1.1): 4
.g
i it is clear that this may be solved by the compl.ementan 1lgorithr
a bounded series of maximum b-matchings (or, in this ca max imum
. s - b matchings). It may be further observed that the complement, (1.2),
3
3 poses the matching problem on a special graph, viz even node simple
~‘ cycle. Moreover it is not difficult to see that e algorithms of
Tibrewala, et al. and Chen are essentially maximum matching algorithms
for a simple cycle with node constraints s fhus their algorithms
may be considered a special implementation of the complementary algorithm
| where the search for s* is speeded up by special structure,. {
| , |
1 For the cases in which ly* s*, the complementary algorithm offers {
i us, in addition to alternative solutions, some special insight into |
i I
i the staffing problem. We may interpret the condition of ly* being much
3 greater than s* to indicate an incompatibility between the work patterns
1 l i
;; | &
{ ( H
| : &




and the pattern of manpower requirements. For such cases, it may be
advisable for the manager to consider differently structured work pat-

terns, or else reconsider the data in b,

Incidentally, it is clear that the complementary algorithm will also
efficiently solve this problem even when two non-consecutive days off
are allowed. 1In this case, the complement simply poses a matching problem
on a graph more general than a wple cycle.
(b) Consider a set of machines that are to be schec over a finite

horizon to meet machine requirement h LA machine has peculiar to

itself some number of consecutive time periods during which it must

remain idle - for preventive maintenance for instance. To find the minimum
number of machines necessary, we may model the problem as in this example:

min 1x

2

(6.1)

where column j reflects the availability of machine j over the discretized

J

planning horizon, and where, in any solution, X, = 1 corresponds to util-

1
J

izing machine j. The key feature of this example is that A possesses the

property of consecutive 0's in columns,

S —




For (6.1) the complement is

i
5 3
max 1lx 1
: . |
Siatie 1 0 0 0 0 {
1 0 0 0 il |
T R RSy P . (0NN '
x <s-b (6.2) i
;SRR SR R i
14
0 i 0 1 0} !
| |
0 0 0 1 0 ]
L | H
Xj = 0 or 1 LA
for which the constraint matrix possesses the well-known "consecutive 1's" 1
|
|
property (Fulkerson and Gross [9]). Thus (6.2) is transformable to a mini- ;
|
3 mum cost network flow problem as in Veinott and Wagner [14]. We conclude '
i i
s then that (6.1) is efficiently solvable as a bounded series of minimum a
|
cost network flow problems, and, moreover, that the round-off result of ;
section 5 holds. h
|
ﬁ 7. Another Staffing Problem
To indicate the flexibility of the preceeding approach, consider a problem %
studied by Brownell and Lowerre [4]. They seek to minimize the number of workers ¢
required to meet daily staffing requirements where each workers is allotted two E
{1
days off each week including every other weekend. They solve the special case '
in which all weekday staffing requirements are identical and weekend requirements l
]
are identical. However, for the more general case of arbitrary daily requirements, {
a variation of the complementary algorithm provides an efficient solution. l

The problem may be posed as an integer program with 0 - 1 constraint matrix

thusly:




e

2

-

s.t.(lst week) ‘bl
3 ?

(1st weekend) 111’ ,b2

S T s (7,1)

(2nd week) 'yiJ bi

[ o

(2nd weekend)

O, JInteper

where each column represents a possible pattern of days off, X, corresponds

to shifts with the first weekend off, and x, corresponds to shifts with the

second weekend off. Furthermore, A, and A, are 0-1 matrices with exactly two

1
zeros in each column, corresponding to two days off for the week.
Now let $1 be the number of workers on shift 1 (first weekend off) and

let S, be the number of workers on shift 2, so that s = 8; t s, is the size

of the total workforce. We observe that during the weekdays of the first

week both shift 1 and shift 2 workers are emploved; thus to meet staffing re-
quirements, no more than s - 51 = :1 £y = b, workers (entry-wise) may be
given time off on these days. On the days of first weekend, only shift 2
workers are on duty, so that no more than s, - b? workers (entry-wise) may be
off those days. Similarly, El + s, - b, and 5! - b, give upper bounds on the

number of workers who may be off during the days of the second week.

As in section 0, we may ask: for a given workforce of size s, partitioned

into two shifts s, and s, ] Gy
1 ' )

who may be given time off according to the work patterns and requirements above?

Again, analagously to section 0, this may be posed mathematically as
s ]

(s = s, + s,), what is the maximum number of people




max T; + TQ
1 )

2 1

— = = r i '
8. t. 0 8y *+ By » Rl |
E-A, & f
0 v, s, - b, |
" ¥ N o £7.2) |
0 Vi S t 8, h,3 .‘
E-A : i
K ri
5 3 Ty ‘]
5 o) Ml =l -
;I ’ ;, v.", integer
which may be decoupled into the two problems 'j
max Hl
o i =)
s.t. (E - Allxl r v ol =3y
‘ 5 (7.3a)
- o
4 |
— S— |
\l 8 integer ‘1
and 4
max 1y
- e
s.t. (E - A,ly, IS, + 5, E]
E . ! (7.3b)
| 8, = b,
:’ . “. integer
1

Problems (7.3a and b) are similar to that discussed in example 6a. In

this case an adequate workftorce s S + s, must have corresponding solutions

to (7.3a and b) which satisfy l\"l 81 and 1y, > s,. Thus we must search for |
- . .- )

the smallest integer s together with a partition s = r:l + s, for which these con-

ditions are satisfied. Such an s and accompanying partition my be found by ap-

plying two-dimensional binary search in the following manner: for fixed s, s, is

1

restricted to the interval 0 - 8, * [s/21; on this interval binary search is

performed, solving at each step the appropriate versions of (7.3a and b); if




am acceptable partition, s = 1 *.8,, 18 found, then s is an adequate workforce

and s* < s; if no acceptable partition is found then s is not adequate and

* *
s < s*, Finally, having determined s* = s, + s, and the corresponding solutions

il 2
;I and ;; to (7.3a and b), an optimal solution to (7.1) is constructed as in
theorem 2.1. In a manner analagous to section 2, the preceeding may be for-
mally argued.

If 0(p(n, log2 1b)) reflects the complexity of problem (7.3), then as in
section 5, it may be argued that this sclves the Brownell and Lowerre problem
in no more than 0((log ig)z s p(n, log2 1b) + n) steps. Again this is formally
efficient with respect to a unary encoding since the problems (7.3) are matching
problems.

Additionally, it may be noted that this approach solves the "k - 1 out

of k'" weekend problem in no more than ()((log2 ig)k v Pln, log2 TE) + n) steps.

8. Extensions and Applications

While the above analysis was carried out for (2.1) a minimization problem
with '">" constraints, similar results hold for maximization problems with
"<" constraints. In addition, several technical extensions of this approach
are possible (Bartholdi [ 3]). For instance, in some cases one may choose to
flip the 0's and 1's in just a portion of the constraint matrix, as was done in
section 7. Also, for the case of arbitrarily weighted objective functions E§,
a smaller but still useful class of problems may be solved by a similar idea.
The particular applicability of this technique seems to lie in scheduling/
staffing problems, where it appears natural to model job/processor availability
by 0 - 1 matrices. As illustrated here, many of the basic problem have appeallingly
patterned matrices., This is especially true of the fundamental models
of idle time scheduling =~ the results of which are unified and extended by this
complementary approach.

Finally, an area of obvious applicability would be to problems with dense

'
&
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0 - 1 matrices. The complements would of course be sparse and therefore per-

haps amenable to (at least empirically efficient) solution.
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